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Abstract. Dynamical mean-field theory is used to classify the 22" = 65 536 different networks 
of binary automata on a square lattice with nearest-neighbour interactions. Application 
of mean-field theory gives 700 different mean-field classes, which fall in seven classes of 
different asymptotic dynamics characterised by fixed points and 2-cycles. 

1. Introduction 

Networks of binary automata are the simplest extended, fully non-linear dynamical 
systems imaginable. Despite the very simple properties of the individual automaton, 
networks of these primitive elements possess a highly complex dynamics, demonstrating 
both regular and chaotic behaviour, separated by well defined phase transitions in the 
parameter space of automaton rules. 

Regular as well as random networks of random automata have been extensively 
studied and their dynamical properties are rather well understood [l-121. For random 
networks analytical results have been obtained for a number of properties, some of 
which were shown to be universal properties of disparate disordered systems ranging 
from spin glasses to randomly broken objects [6-81. 

Regular networks of homogenous (defined below) automata is a larger field, and 
less well studied. One-dimensional networks were classified according to phenotypes 
by Wolfram some years ago ([13], reprinted in [14]). (A phenotypic classification is 
based on observed behaviour, while a genotypic classification is based on intrinsic 
properties of the entities being classified.) Many special cases of two-dimensional 
networks have been studied for their ability to model physical, chemical and biological 
systems ([ 141 and references therein). An explanatory phenomenological study of 
two-dimensional homogenous networks was reported and many open questions formu- 
lated in [15], reprinted in [141. Much work has been done to develop a so-called 
local structure theory for the purpose of genotypic classification of regular networks 
[16-181. This is an approximation scheme which may be applied to various orders, 
higher orders giving better approximations, in general. In [ 171 the local structure 
theory was applied to the equivalent of Conway's Game ofLife on a hexagonal lattice. 
With this exception it has only been applied to one-dimensional networks and its 
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systematic application to any order is not obvious in dimensions higher than one. To 
order one, local structure theory is just mean-field theory, and may be applied in any 
dimension. The higher the dimension, the better the approximation it gives. 

Stauffer has recently undertaken the classification of two-dimensional, homogenous 
networks of automata according to their limit behaviour as time goes to infinity. This 
project is the two-dimensional equivalent of the classification of one-dimensional 
networks by Wolfram, and  a phenotypic classification. The higher dimension makes 
Stauffer’s project vastly more demanding, as is amply illustrated by preliminary results 
for automata on square lattices receiving inputs only from their four nearest neighbours 
[ 191. The number of binary automata receiving four inputs is 2” = 65 536. The eightfold 
D(4) symmetry of a square lattice with ‘spins’ that can be either ‘up’ or ‘down‘ reduces 
this number by a factor slightly less than eight, leaving more than 8 342 different 
networks of automata to classify. The limit behaviour of the magnetisation of all these 
networks must be described as a function of the initial magnetisation. Because of the 
highly nonlinear dynamics of these systems, the only exact way to do  this is in general 
to compute the time-development for enough initial magnetisations, until late enough 
times, on lattices large enough not to show noticeable finite-size effects. This must be 
done for more than 8 000 different networks. Clearly a formidable task no matter how 
one defines ‘late enough’ and  ‘large enough’! Consequently, any indication of what 
results to expect is of value. 

In  the present article we use dynamical mean-field theory to describe the time 
evolution of the magnetisation of each of the 65 536 different binary automata receiving 
four inputs, and  classify them according to their limit behaviour. The mean-field 
description treats several automata as identical, including those that are identical 
because of the D(4) symmetry of the square lattice. Thus the mean-field description 
gives, by its mere application, a first classification of the 65 536 automata into 700 
different classes (section 2).  For each of these classes the time evolution of the 
magnetisation m ( t )  is given by a fourth-degree polynomial mapping m ( t )  into m ( t + 1). 
These 700 polynomials are classified according to the properties of the map m ( r  = 0) + 
m ( t  =m), i.e. according to the nature and location of fixed points and cycles of the 
map m ( t ) +  m ( t +  1 ) .  That gives as a final result seven different classes with some 
subclassification (section 3 ) .  Since the time evolution of the networks studied here is 
given by two non-interacting subsystems, some subtleties must be sorted out before 
the mean-field predictions can be compared with simulation results (section 4). Section 
5 contains our  conclusions. The distribution of the original 65 536 networks over the 
initial 700 mean-field classes, the further classification of the latter, and fixed-point 
and  cycle values for the mean-field classes have been tabulated, and  are available from 
the third author (HFI  in machine-readable form. 

2. Dynamical mean-field theory 

We consider a square lattice with a binary (or  Boolean, or Ising spin) variable v, at 
each lattice site i. These dynamical variables develop in discrete time t according to 
a rule 

U, ( t + 1 1 = f ( U, i , U, ~ i , ur - 2 ,  c,. 5 )  (1) 

where i * i and i * denote nearest-neighbour sites to site i along the first and  second 
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lattice axis, respectively. Since the binary function f is the same on all lattice sites the 
network is called homogenous. The magnetisation at time t is defined in the usual 
way as 

where N is the number of lattice sites, preferably taken to infinity. 
This magnetisation is about the simplest conceivable measure of the activity in the 

network. A constant value of m = 1 or -1 explains itself. Other values, constant or  
non-constant, contain too little information to fully determine the state of the network. 
But, focusing on the magnetisation alone, we may ask the following questions. 

(i) Does the limit behaviour of m( t )  for t + oc depend only on m(O), or will two 
initial configurations (a,(O)),=, with the same magnetisation typically lead to 
different limit behaviours of their magnetisations? Examples of the latter are easily 
constructed on finite lattices. Our  concern is with the question in the ‘thermodynamical’ 
limit of a n  infinite lattice. 

(ii) In case of the first possibility, can the functional relation between m(0)  and 
the limit behaviour of m( t )  be  determined for a given rule f ?  

(iii) Do several rules f give rise to similar limit behaviour of m( 1) as a function 
of m(O), thus leading to a classification of the two-dimensional networks of automata 
considered here? 

As anticipated in the introduction, within the mean-field description applied here 
the answers to these questions are as follows. 

( i )  m ( t + l )  is a function of m ( r )  only. 
(ii) This function can be found for given f(a), and with it the limit behaviour 

sought for. 
(iii) The networks considered can be classified according to similarities in their 

limit behaviour as derived from the map m( t )  --$ m( t + 1). 
Mean-field theory is conceived as a theory for statistical averages, and  hence is 

well suited for the problem just posed. It is an approximate method, however. Since 
it neglects fluctuations, it also neglects correlations between them. Consequently our 
results should be considered qualitative or semi-quantitative pointers to what to expect 
and  look for in simulations. At the same time, our results may be considered a 
leading-order approximation in an  expansion scheme that gradually takes correlations 
into account. This is the usual 1/(2d)  expansion giving corrections to mean-field 
theory, 2d being the coordination number of a hyper-cubical lattice in d dimensions. 
The mean-field theory is derived in the following way. Using (1) and  ( 2 )  

1 

N ,  
m ( t +  1) =-I . f ( p , + i ( t ) ,  u,-i(t), gt+2(1 ) ,  @,-i(t)). ( 3 )  

We choose u , ( t ) c  {-1, l }V i ,  t ,  and call it a ‘spin’. Then f(1 +c+m(t))  is the fraction of 
spins on the lattice that have the value U at time t. On the right-hand side of ( 3 )  we 
average over the lattice. If, as an approximation, we neglect correlations between the 
four next-neighbour spins a , + i ( t ) ,  a,-i( t ) ,  u,+2(t) and a,-q(f), they independently take 
the values U = *1 on the fraction I( 1 + am( r ) )  of all lattice sites at  time t. This is the 
mean-field approximation. Used in (3 )  it gives 

m’= T ( m ) = l  16 C f(al ,  a?, a?,  a4)(l + m a , ) ( l +  m u d l  + m a , ) ( l +  ma,) (4) 
u , , u 2 . u ? . ~ T 4 = * l  
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with m = m ( t )  and m'= m ( t +  1). Equation (4 )  is conveniently rewritten as 

m ' =  T ( m ) = c , ( ~ ) ' + c ~ ( ~ )  1 - m  1 - m  (T)+c~(T)  l + m  1 - m 2  (7) l + m  ' 

l + m  l + m  ' 
+ c4 ( y) (7) + c5 (7) 

are independent parameters with the ranges of values shown. 
Equation (6) shows that there are 2 x 5 x 7 x 5 x 2 = 700 different maps T :  m + m' 

described in (5), and gives the map corresponding to any function f :  The 224 = 65 536 
different functions f are thus divided into 700 classes of functions which are indistin- 
guishable in the mean-field description. In  a given class, characterised by a set of 
allowed values for ( c , ,  c2, c3, c4, c5), there are 

N ( c , ,  c2, c3, c4, c5) 

4! 6! - - 
(2-/c,1/2)!(2+ lc21/2)! (3-Ic31/2)!(3+Ic31/2)! 

of the original 65 536 functions. 

behaviour of repeated application of a map to the interval [-1, I]. 
In the next section we classify the 700 different maps ( 5 )  according to the asymptotic 

3. Solution and classification 

Since in our  mean-field description the time evolution of the network is obtained by 
iterating the map T in (5), the attractors-fixed points, cycles or strange-of this map 
are of prime interest. They represent the possible asymptotic patterns of behaviour of 
the system as time goes to infinity. Repulsive fixed points and cycles are of equal 
interest, because they separate the basins of attraction of the attractors, and in this 
sense are critical points on the axis of initial magnetisations. 

Since the fixed-point equation 

T ( m * )  = m* (8) 
determines m*  as a root in the fourth-degree polynomial T (  m )  - m, it can be determined 
analytically. The analytical expressions for the roots of a fourth-degree polynomial 
are, however, not very handy; and  we also need the value of the derivative d T / d m ( m * )  
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at the fixed points, to determine whether they are attractive, marginal or repulsive. 
Furthermore, the equation for p-cyclic points 

T P ( m * )  = m* (9) 

determines m* as roots in a 4p-degree polynomial, hence they cannot be found 
analytically for p > 1. 

A great many of the 700 maps T in question obviously have -1, 0 and/or 1 as 
fixed or cyclic points. In these cases the remaining points of interest are easier to find 
and characterise analytically. We found this simplification of little help in classifying 
all 700 maps. Even though these special cases are easier to handle, having to handle 
special cases is in itself a complication. Thus, considerations of intellectual economy 
favours application of brute force. 

We let a computer program go through all 700 functions. For each function T it 
considered a large number of initial values m, equally spaced on the interval [-1, 13, 
applied T a large number of times to each initial value, and checked whether it had 
become a fixed or cyclic point for T. In this way all attractors and repulsors were 
found for every function T, which was classified accordingly. In such a numerical 
approach it may be a problem to distinguish a strange attractor from a finite, but long, 
cycle. Since we found no cycles with periods larger than 2 among the 700 functions 
under consideration, we did not have this problem. 

We find the classes shown in table 1 for the 700 maps defined in (4). The table 
also shows the number of functions f in (1) that fall in a given class by the mean-field 
approximation (4). 

From the expression ( 5 )  for T we see a relationship 

T ( m ;  c I ,  c? ,  c3, c4, cg) = - T ( - m ;  -c5, -c4, -c3, -c2,  - c l )  (10) 

holds between pairs of maps that are not odd with respect to m. Maps that are odd 
with respect to m are characterised by ( c l ,  c2, c3, c4, c,) = (-cs, -c4, -cj ,  -c,, -c,), 
and are only related to themselves by (10). From (10) it follows that if m* is a 
fixed point of T (  ; c , ,  c,, c3, c4, c5), then -m* is a fixed point of 
-T(  ; -c5, -c4, -c3, -c2,  -c l ) .  Similarly, a 2-cycle ( m l ,  m 2 )  of the first map T causes 
the second map to have ( -m,  - m l )  as 2-cycle. Fixed points or 2-cycles related this 
way are of the same nature, attractive or repulsive. Consequently, maps related by 
(10) belong to the same class A, B, C, D, E, F or G, but not necessarily to the same 
subclass. From the way sub-classes are characterised it follows that (10) relates all 
functions in a subclass either to functions in the same subclass (cases: 
A7, A8, B9, C3, C4, D, E, F, G) or to all functions in another subclass, i.e. (10) relates 
pairs of subclasses: A1 with A2, A3 with A4, A5 with A6, B5 with B6, B3 with B4, B7 
with B8, B1 with B2, and C1 with C2. 

These relationships and the special, but multitudinous, cases of functions with 
attractors and repulsors that are readily determined analytically, were used to check 
the results of the programs automatic classification. The special cases are as follows. 

c, = -1: -1 is a fixed point. This result is exact, not just for the mean-field 
description, but also for the original dynamics (1). 

c5 = 1: 1 is a fixed point. This result is also exact for the original dynamics (1). 
c I  + c,+ c, + c,+ cs = 0: 0 is a fixed point. 
When two of these three cases occur simultaneously, or -1, 0 or 1 is a marginal 

fixed point-i.e. a doublet root of T (  m )  - m-the remaining fixed points of T are 
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Table 1. The seven mean-field classes divided into subclasses. Column 1: name of 
(subjclass.  Column 2: number o f m a p s  T i n  the (subjclass.  Column 3: numberoffunct ions 
f falling in  the (sub)class.  Column 4: attractors by which the (sublclass is classified. 
Column 5: repulsors delimiting basins of attraction. Notation: m* =fixed point;  ( m ,  , m 2 )  = 
2 -cycle. 

Number  of Number of 
Class maps T functions f Attractors Repulsors 

A 
A I  
A2 
A3 
A4 
A5 
A6 
A7 
A8 

B 
B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 

C 
c 1  
c 2  
c 3  
c 4  

D 

E 

F 

G 

574 
48 
48 
37 
37 

113 
113 
81 
97 

31 
1 
1 
1 
1 
5 
5 
1 

7 - 
13 

67 
8 
8 

43 
8 

24 

2 

1 

1 

61 096 
3 576 
3 576 
3 026 
3 026 

12 720 
12 720 
9 680 

13 276 

444 
36 
36 
15 
15 
41 
41 
10 
10 

240 

2 018 
32 
32 

1854  
100 

822 

12 

320 

320 

1 attractive fixed point 
-1 - 

1 
-1  1 

I - 1  

- 

m * ~ ] - l ,  I [  -1 
m * ~ ] - l ,  1[ 1 
m * ~ ] - l ,  1[ -1, 1 
m * ~ ] - l ,  I [  ( - ] , I )  

2 attractive fixed points 
-1,O' 0-, 1 

0-, 1 -1, o+ 
-1, o+ 0- 

1 , o -  0' 
- 1 , m : ~ ] - l ,  I [  mFE1-1, m: [  

m:E]-l, I[ ,  1 m f E ] m : ,  I [  
-1, mSE1-1, 1[ 

m;S E 1-1, I[ ,  1 
- 1 , l  m"E] - - l ,  1[ 

m: E 1-1, m : [ ,  1 
-1, m F ~ ] m : ,  I [  

1 attractive fixed point and  1 attractive 2-cycle 
(-1, 11, m $ ~ ] - l ,  1[ ( m , , m , ) ~ l - l ,  1[ 

2 attractive 2-cycles 
1-1, l j ,  im,,  m , ) ~ ] - l ,  I [  m * , ( m , ,  m ? ) ~ ] - l ,  1[ 

all m-values fixed points 

all m-values on  2-cycles m - - m  

Total 700 65 536 

readily found as roots of a second-degree polynomial. This is the case for subclasses 
A3, A4, A7, B3, B4-B2, and F. 

For example when c ,  = -1 and c5 = lm* = -1 and m* = 1 are fixed points, and the 
other two solutions to the fixed point equation (8) are 

4 + C ?  - CJ * J4(2 + ~ , ) ( 2  - c,) + C :  m* = 
C? - c3 + c, 
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(If in (11) m* does not belong to the interval [-1, 11, it is not a fixed point of interest.) 
Maps T with this property make up the subclasses A3, A4, A7, B7-92 and F, one 
quarter of the 700 maps under consideration. 

The classes B1, B2, B3 and  B4 have 0 as a doubly degenerate fixed point, attractive 
from one side, repulsive from the other, but marginal, with eigenvalue 1, to both sides. 
The approach to or exit from this fixed point is not geometric, but a case of critical 
slowing down, as that phenomenon is modelled by mean-field theory. 

4. Relating mean-field results to the original problem 

Equation (4) gives the exact result for m ( r +  1) if the spins in the configuration 
{a,( t ) } , = ,  are uncorrelated with magnetisation m( t ) .  The initial configuration 
{ a , ( O ) } , , ,  ,% is chosen that way; it has uncorrelated spins and a given magnetisation 
m(0) .  So (4) gives the exact result for m ( 1 ) .  The exact value of m(2) is a function of 
{ ~ ~ ( 1 ) } ~ = ,  and the groups of four spins that make up  the input to the individual 
cellular automaton are correlated. This is where the mean-field approximation comes 
in, and is used in all ensuing time steps. We have observed that for many rules o f f  
the first application of T to m gives the largest change of m towards its fixed-point 
or limit-cycle value. Since the choice of initial configuration makes mean-field theory 
exact in the first time step, our final classification may be more reliable than one might 
expect from the mere mean-field approximation. 

Since T ( l ) = f ( l ,  1, 1 , l ) a n d  T( - l )= f ( -1 , -1 ,  -1, -1),themean-fielddescription 
is exact whenever it predicts a fixed point or 2-cycle with magnetisation i l .  

Before a general comparison can be made between mean-field and simulation 
results two things are needed: ( i )  simulation results, we await their publication [19]; 
(ii) an interpretation of mean-field and simulation results in terms of each other, this 
appears to be a trivial requisite, since the magnetisation is defined for both, and  can 
be compared with no further ado. It is immaterial whether, for example, a fixed-point 
value determined in mean-field theory is realised in the simulation by a configuration 
that changes chaotically in time with constant magnetisation, or by a configuration 
dominated by spins of fixed value. There is a subtlety at play, however: the square 
lattice with nearest-neighbour interaction neglecting the central spin is decoupled into 
two sublattices such that the configuration on one sublattice at time t + 1 depends only 
on the configuration on the other sublattice at time t .  This means that mean-field 
results must be ascribed to each subsystem separately, and it is the combined behaviour 
of the two subsystems that can be compared with simulation results obtained by 
averaging over both subsystems. In general, both subsystems will obey the same 
mean-field dynamics, to the extent it is a reasonable approximation. The reason for 
this is that our initial configuration is chosen at random with a given magnetisation 
and no correlations between individual spins. It follows that so are the initial configur- 
ations of the two subsystems. Hence, in general they fall on the same attractor, and 
if it is a 2-cycle they have the same phase. But when the initial configuration is chosen 
with magnetisation equal or very close to that of a repulsive fixed point or  cycle, 
fluctuations in a finite system being simulated may cause the two subsystems to end 
u p  on different attractors, or on the same 2-cycle, but with different phases. Consider, 
for example, the networks in class B2: they have 0- and 1 as attractive fixed points, 
and  O+ as repulsive fixed point. Starting a simulation with zero magnetisation, one 
subsystem may end up with magnetisation 0-, the other with magnetisation 1, according 
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to mean-field theory. But the total magnetisation is then 0.5, and  seemingly way off 
the mean-field prediction for the class B2! The fact that 0 is a marginal fixed point is 
of no importance for the argument just presented. It holds with little change for all 
networks in classes B, C, D and  E, and initial magnetisation on a repulsive point or  
cycle. Since mean-field theory is only an  approximation one does not know a priori 
in a simulation exactly where these repulsive points and cycles are located, o r  for that 
matter which class a given network is in, o r  which classes there are. Hence, there is 
no way to avoid this complication except to simulate only one of the two subsystems. 
We recommend doing so, as it gives cleaner results with no  loss of information or 
generality. 

In principle, this presentation of results is only completed when we have given the 
relationship between all of the 700 mean-field classes and  the classes in the table above, 
together with the magnetisations of the attractors and  repulsors of all 700 maps. Even 
after eliminating one map in every pair related by (10) from the table, we are left with 
a table with more than 350 entries. In its entirety, such a table is meaningful only in 
machine-readable form, and  can be obtained from the authors. For any particular 
automaton rule f the reader can easily find the class it belongs to with the help of this 
machine-readable table. The set of attractors and  repulsors of any map T resulting 
from any rule f by ( 5 )  and (6) are listed in the table. Since we know that nothing 
more complicated than a 2-cycle is encountered, a crude plot of T suffices to decide 
the subclass it belongs to. 

5. Conclusions 

We have used dynamical mean-field theory to describe the time evolution of the 
magnetisation of each of the 65 536 different binary automata receiving four inputs, 
and  classified them according to their limit behaviour. The mean-field description 
gave, by its mere application, a first classification of the 65 536 automata into 700 
different classes. 

For each of these classes the time evolution of the magnetisation m ( t )  was given 
by a fourth-degree polynomial mapping m( t )  into m (  t + 1). These 700 polynomials 
were classified according to the nature and  location of fixed points and cycles of this 
map. That resulted in seven different classes. We have tabulated the fixed-point and  
cyclic values for the magnetisation, and made them available in machine-readable form. 

We have described a complication encountered, when mean-field predictions are 
to be compared with simulation results, and  recommended a solution requiring only 
a minor change in the way simulations are done for the networks discussed here. 
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